# Dynamic Resource Management in Core Networks

# Jaafar M. H. Elmirghani, University of Leeds

j.m.h.elmirghani@leeds.ac.uk









### Overview

- Dynamic adaptation to available renewable energy
- Optimum placement of data centres and content
- Dynamic content caching
- Dynamic peer-to-peer content distribution
- Future directions

#### End-to-end network



### "Hybrid-power" IP over WDM network architecture



4



#### Energy saving under ALR with the REO-hop heuristic



- With only 20 kW renewable in 5 nodes the energy saving compared to the nonbypass case without solar energy is approximately 85% (maximum) and 65% (average).
- Note that the 85% and 65% savings are almost real energy savings since the renewable energy is low here and has limited effect.
- When all nodes use 80 kW renewable energy, the energy saving is approximately 97% (maximum) and 78% (average).

# Network design with data centres, energy-efficiency

- Three problems are investigated:
  - <u>Firstly</u>, the optimization, Linear Programming (LP), of the data centres locations to minimize the Power consumption.
    - Investigate the IP over WDM routing approach (bypass and nonbypass), the regularity of the network topology and the number of data centres in the network.
  - <u>Secondly</u>, we investigate the energy savings introduced by implementing a data replication scheme in the IP over WDM network with data centres, where frequently accessed data objects are replicated over multiple data centres according to their popularity.
  - <u>Thirdly</u>, we investigate introducing renewable energy sources (wind and solar energy) to the IP over WDM network with data centres.
    - We evaluate the merits of transporting bits to where renewable energy is (wind farms), instead of transporting renewable energy to where data centres are.
    - We consider the impact of the electrical power transmission losses, network topology, routing, traffic.

#### Data centres in an IP over WDM network



# Summary of power savings as a result of data centre location optimisation

| Topology                                         | Data centre  | Data centre     |
|--------------------------------------------------|--------------|-----------------|
|                                                  | traffic only | traffic and     |
|                                                  |              | regular traffic |
| Irregular topology under the non-bypass          | 37%          | 11%             |
| heuristic                                        |              |                 |
| Irregular topology under the multi-hop           | 17%          | 6.3%            |
| bypass heuristic                                 |              |                 |
| <b>NSFNET</b> topology with a single data centre | 26.6%        | 12.7%           |
| under the non-bypass heuristic                   |              |                 |
| <b>NSFNET</b> topology with a single data centre | 8.6%         | 4.6%            |
| under the multi-hop bypass heuristic             |              |                 |
| <b>NSFNET</b> topology with 5 data centres under | 11.4%        | 4.4%            |
| the non-bypass heuristic                         |              |                 |
| <b>NSFNET</b> topology with 5 data centres under | 6.5%         | 1.7%            |
| the multi-hop bypass heuristic                   |              |                 |

#### Data replication in IP over WDM networks with data centres

- Large operators have multiple data centres.
- Content (that has different popularity) can be replicated to reduce delay and power consumption.
- A MILP model is developed to optimize the selection of data centres to replicate data objects under the lightpath bypass approach.
- A Zipf distribution is assumed for content popularity.
- With 5 data objects, the popularities are: 43.7%, 21.8%, 14.5%, 10.9% and 9%.



DC & regular traffic Non-bypass:

LP optimal DC nodes = (5,6,8,10,13)

LP determines where each object is replicated

Power saving=28%

#### Renewable energy in IP over WDM networks with data centres

- We compare moving bits to where renewable energy is (wind farms) to transporting renewable energy to data centres.
- We have selected only 3 wind farms based on their location and maximum output power to power the data centres in the network: 1)
  WF1: Cedar Creek Wind Farm, 2) WF2: Capricorn Ridge Wind Farm, 3) WF3: Twin Groves Wind Farm in blue. The maximum output power of the three wind farms is 300MW, 700 MW and 400 MW, respectively.
- We assume the transmission power loss is 15% per 1000km [25] and the percentage of the power of wind farms allocated to data centres is assumed to be 0.3%.



#### Data centre, computing, cooling and lighting power usage

- The cooling & lighting power consumption of a typical data centre is 150-200W/ft<sup>2</sup>. Assuming a 3500ft<sup>2</sup> data centre, the total power consumed in a typical data centre for cooling is 700kW and the computing power consumption in a data centre is assumed to be 300kW which is typical for this data centre size.
- The power allocated by a wind farm to a data centre is known and is assumed here to be 1.4MW. This corresponds to a power usage efficiency (PUE) of 2 which is typical for a data centre.
- The renewable energy available to a data centre is a function of the transmission losses and these are location dependent. Furthermore the network topology, traffic, components' power consumption also play an important role in determining the optimum data centre location.
- Therefore the LP model here takes into account the previous trade-offs as well as the trade-offs introduced by the losses associated with the transmission of renewable energy to the data centre locations.

# Renewable energy in the IP over WDM network with data centres

#### LP, Simulation and Results

- We run the LP model with five data centres (*Ndc=*5) under the previous assumptions.
- The optimal locations of data centres obtained from the LP model are as follows (4, 5, 6, 7, 8) where data centres 4 and 5 are powered by WF1, data centre 6 and 7 are powered by WF2, and data centre 8 is powered by WF3.
- The LP model results are such that all the data centres are located in the centre of the network.
- It can be observed that the optimum data centres locations are next to or near wind farms.

#### Energy efficient caching for IPTV on-demand services



- By 2014 over 91% of the global IP traffic is projected to be a form of video (IPTV, VoD, P2P), with an annual growth in VoD traffic of 33%.
- In proxy-based architectures, proxies (or caches) are located closer to clients to cache some of the server's content.
- Our goal is to minimize the power consumption of the network by storing the optimum number of the most popular content at the nodes' caches.



#### Energy Efficient BitTorrent over IP over WDM Networks



Data from: RHK, McKinsey-JPMorgan, AT&T, MINTS, Arbor, ALU, and Bell Labs Analysis: Linear regression on log(traffic growth rate) versus log(time) with Bayesian learning to compute uncertainty

- The two content distribution schemes, Client/Server (C/S) and Peer-to-Peer • (P2P), account for a high percentage of the Internet traffic.
- We investigate the energy consumption of BitTorrent in IP over WDM networks. •
- · We show, by mathematical modelling (MILP) and simulation, that peers' colocation awareness, known as locality, can help reduce BitTorrent's cross traffic and consequently reduces the power consumption of BitTorrent on the network side.

# Energy Efficient BitTorrent over IP over WDM Networks

- The file is divided into small pieces.
- A tracker monitors the group of users currently downloading.
- Downloader groups are referred to as swarms and their members as peers. Peers are divided into seeders and leechers.
- As a leecher finishes downloading a piece, it selects a fixed number (typically 4) of interested leechers to upload the piece to, ie unchoke, (The choke algorithm).
- Tit-for-Tat (TFT) ensures fairness by not allowing peers to download more than they upload.
- We consider 160,000 groups of downloaders distributed randomly over the NSFNET network nodes.
- Each group consists of 100 members.
- File size of **3GB**.
- Homogeneous system where all the peers have the same upload capacity of 1Mbps.

#### Energy Efficient BitTorrent over IP over WDM Networks

- Optimal Local Rarest First pieces dissemination where Leechers select the least replicated piece in the network to download first.
- BitTorrent traffic is 50% of total traffic.
- Flash crowd where the majority of leechers arrive soon after a popular content is shared.
- We compare BitTorrent to a C/S model with 5 data centers optimally located at nodes 3, 5, 8, 10 and 12 in NSFNET.
- The upload capacity and download demands are the same for BitTorrent and C/S scenarios (16Tbps).





#### Average Download Rate



- All models reach optimal performance
- Energy-efficient heuristic reduce performance by 13%





# Future directions

- Dynamic load migration to match energy supply and demand; availability of renewable energy
- Traffic shaping to enhance dynamic resource adaptation and energy saving
- Hybrid P2P and C/S content distribution networks
- Cross layer resource adaptation (physical layer impairments, adaptive and mixed line rates; application awareness of physical and network layers)
- Dynamic resource adaptation in clean slate architectures (eg. time switched, subcarrier switched, time-subcarrier switching)